Oncogenic Wnt/β-catenin signalling pathways in the cancer-resistant epididymis have implications for cancer research.

نویسندگان

  • K Wang
  • N Li
  • C H Yeung
  • J Y Li
  • H Y Wang
  • T G Cooper
چکیده

Aberrant activation of the Wnt/β-catenin pathway occurs in cancers. This review presents several important cancer-related aspects of Wnt/β-catenin signalling relevant to the epididymis, provides evidence of such epididymal gene expression and suggests a new direction for further research. The data presented here indicate that besides containing many Wnt/β-catenin-pathway components, the normal adult human epididymis expresses much more β-catenin than the colorectal carcinoma cell line HCT116, which possesses elevated β-catenin expression. The low cancer incidence in the epididymis may be due to factors present in the human epididymis that regulate this oncogenic Wnt/β-catenin pathway, including (i) 14 of 17 secreted pathway inhibitors, (ii) the majority of the micro-RNAs known to target this pathway, (iii) plasma membrane-associated E-cadherin and CEACAM1 that anchor β-catenin, preventing its availability for nuclear entry and oncogenic transcriptional activity, (iv) the recently identified membrane-located tumourigenesis inhibitors RNF43 and ZNRF3 that mediate the degradation of the Wnt receptor components Fzds and Lrp5/6 and (v) nuclear KLF4, which competes with TCF for β-catenin, limiting its transcriptional activity and stabilizing telomeres, thereby reducing mutation incidence. The above regulatory factors expressed by the human epididymis, and the absence of androgen receptor translocation known to promote nuclear translocation of β-catenin in tumourigenesis in an animal model, may act synergistically to provide hostility in different cell compartments towards tumour formation. The lack of evidence for β-catenin in epididymal nuclei is noteworthy. Studying this phenomenon may help reveal the mechanisms underlying oncogenic Wnt/β-catenin signalling and shed new light on cancer therapy and prevention.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interaction of viral oncogenic proteins with the Wnt signaling pathway

It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenes...

متن کامل

The Canonical Wnt Signaling (Wnt/β-Catenin Pathway): A Potential Target for Cancer Prevention and Therapy

Precise regulation of signal transduction pathways is crucial for normal animal development and for maintaining cellular and tissue homeostasis in adults. The Wnt/Frizzled-mediated signaling includes canonical and non-canonical signal transduction pathways. Upregulation or downregulation of the canonical Wnt-signaling (or the Wnt/β-Catenin signal transduction) leads to a variety of human diseas...

متن کامل

Direct Targeting of β-Catenin by a Small Molecule Stimulates Proteasomal Degradation and Suppresses Oncogenic Wnt/β-Catenin Signaling.

The Wnt/β-catenin signaling pathway plays a major role in tissue homeostasis, and its dysregulation can lead to various human diseases. Aberrant activation of β-catenin is oncogenic and is a critical driver in the development and progression of human cancers. Despite the significant potential of targeting the oncogenic β-catenin pathway for cancer therapy, the development of specific inhibitors...

متن کامل

Investigating the role of signaling pathways and cancer stem cells in esophageal cancer with a therapeutic approach

Esophageal cancer (EC) is the sixth main cause of cancer death worldwide. Important genes associated with esophageal cancer include FOXO3, AKT, and GSK3β. Excessive FOXO3 expression inhibits the proliferation of cancer cells. The expression of AKT is involved in controlling cell growth in tumors. GSK3β activity is higher in cancer tissues. Given the effective role of cancer stem cells (CSCs) in...

متن کامل

An intrinsically labile α-helix abutting the BCL9-binding site of β-catenin is required for its inhibition by carnosic acid

Wnt/β-catenin signalling controls development and tissue homeostasis. Moreover, activated β-catenin can be oncogenic and, notably, drives colorectal cancer. Inhibiting oncogenic β-catenin has proven a formidable challenge. Here we design a screen for small-molecule inhibitors of β-catenin's binding to its cofactor BCL9, and discover five related natural compounds, including carnosic acid from r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular human reproduction

دوره 19 2  شماره 

صفحات  -

تاریخ انتشار 2013